6(3^2t-1)+3=27

Simple and best practice solution for 6(3^2t-1)+3=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(3^2t-1)+3=27 equation:



6(3^2t-1)+3=27
We move all terms to the left:
6(3^2t-1)+3-(27)=0
We add all the numbers together, and all the variables
6(3^2t-1)-24=0
We multiply parentheses
18t^2-6-24=0
We add all the numbers together, and all the variables
18t^2-30=0
a = 18; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·18·(-30)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{15}}{2*18}=\frac{0-12\sqrt{15}}{36} =-\frac{12\sqrt{15}}{36} =-\frac{\sqrt{15}}{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{15}}{2*18}=\frac{0+12\sqrt{15}}{36} =\frac{12\sqrt{15}}{36} =\frac{\sqrt{15}}{3} $

See similar equations:

| (n+2)=5n+10 | | 14t-1.86t^2=0 | | (8/x+2)-(5/x+3)=(3/x+1) | | 0,8-y=3,2+y | | 3(x+2)-3(x-1)=9 | | 6x/(2x-1)=2 | | 2,6-0,2b=4,1-0,5b | | X*x-9x+7=0 | | x=X+÷2 | | X=X+(x÷2) | | (3(t+7)+-5t)/3=5 | | 6-2x=-3x+8 | | 4^(3x-8)=64^(2x) | | (6×h)×h=33.25 | | 5(t+4)=3( | | g(-3)=4-3(-3) | | x+5÷x-7=2÷5 | | 1,7-0,3x=2+1,7x | | 2(4+x)=6x+9-4x | | 10+4x=6-2x | | 1,2p+1=1-p | | 21x+1=-3x | | 2/1-x-1/x=x+1/x(1-x) | | 0,5a+11=4-3a | | -0,7x+2=65 | | 1,3x=54+x | | 5x-150=0 | | -1,5x-9=0 | | 13x-2(x+3)=6(2x+7) | | 13x-2(x+3)=62x+7) | | 3^12x=27^3x+4 | | (4x-7)(4x-7)=0 |

Equations solver categories